Senataxin modulates neurite growth through fibroblast growth factor 8 signalling.

نویسندگان

  • Chiara Vantaggiato
  • Sara Bondioni
  • Giovanni Airoldi
  • Andrea Bozzato
  • Giuseppe Borsani
  • Elena I Rugarli
  • Nereo Bresolin
  • Emilio Clementi
  • Maria Teresa Bassi
چکیده

Senataxin is encoded by the SETX gene and is mainly involved in two different neurodegenerative diseases, the dominant juvenile form of amyotrophic lateral sclerosis type 4 and a recessive form of ataxia with oculomotor apraxia type 2. Based on protein homology, senataxin is predicted to be a putative DNA/RNA helicase, while senataxin interactors from patients' lymphoblast cell lines suggest a possible involvement of the protein in different aspects of RNA metabolism. Except for an increased sensitivity to oxidative DNA damaging agents shown by some ataxia with neuropathy patients' cell lines, no data are available about possible functional consequences of dominant SETX mutations and no studies address the function of senataxin in neurons. To start elucidating the physiological role of senataxin in neurons and how disease-causing mutations in this protein lead to neurodegeneration, we analysed the effect of senataxin on neuronal differentiation in primary hippocampal neurons and retinoic acid-treated P19 cells by modulating the expression levels of wild-type senataxin and three different dominant mutant forms of the protein. Wild-type senataxin overexpression was required and sufficient to trigger neuritogenesis and protect cells from apoptosis during differentiation. These actions were reversed by silencing of senataxin. In contrast, overexpression of the dominant mutant forms did not affect the regular differentiation process in primary hippocampal neurons. Analysis of the cellular pathways leading to neuritogenesis and cytoprotection revealed a role of senataxin in modulating the expression levels and signalling activity of fibroblast growth factor 8. Silencing of senataxin reduced, while overexpression enhanced, fibroblast growth factor 8 expression levels and the phosphorylation of related target kinases and effector proteins. The effects of senataxin overexpression were prevented when fibroblast growth factor 8 signalling was inhibited, while exogenous fibroblast growth factor 8 reversed the effects of senataxin silencing. Overall, these results reveal a key role of senataxin in neuronal differentiation through the fibroblast growth factor 8 signalling and provide initial molecular bases to explain the neurodegeneration associated with loss-of-function mutations in senataxin found in recessive ataxia. The lack of effect on neuritogenesis observed with the overexpression of the dominant mutant forms of senataxin apparently excludes a dominant negative effect of these mutants while favouring haploinsufficiency as the pathogenic mechanism implicated in the amyotrophic lateral sclerosis 4-related degenerative condition. Alternatively, a different protein function, other than the one involved in neuritogenesis, may be implicated in these dominant degenerative processes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SH2B1beta enhances fibroblast growth factor 1 (FGF1)-induced neurite outgrowth through MEK-ERK1/2-STAT3-Egr1 pathway.

Genetic studies have established the crucial roles of FGF signaling, FGF-induced gene expression and morphogenesis during embryogenesis. In this study, we showed that overexpressing a signaling adaptor protein, SH2B1beta, enhanced FGF1-induced neurite outgrowth in PC12 cells. SH2B1beta has previously been shown to promote nerve growth factor (NGF) and glial cell line-derived neurotrophic factor...

متن کامل

Axonal growth mediated by cell adhesion molecules requires activation of fibroblast growth factor receptors.

During nervous system development neurons extend axons which navigate along precise pathways to innervate specific target tissues, often over long distances. The distal tip of the axon, the growth cone, plays a major role in determining the direction and distance of axonal outgrowth. A variety of outgrowth-promoting or -inhibitory soluble and matrixor cell-associated molecules encountered by th...

متن کامل

FGF signal transduction in PC12 cells: comparison of the responses induced by endogenous and chimeric receptors.

Rat phaeochromocytoma (PC12) cells respond to many growth factors and produce different phenotypes, including neurite outgrowth. Receptor tyrosine kinases (RTK), which activate multiple signalling pathways in response to ligand binding, initiate many of these. One such family of receptors, the fibroblast growth factor receptor (FGFR), has four different members and expresses at least three of t...

متن کامل

Src kinase modulates the activation, transport and signalling dynamics of fibroblast growth factor receptors.

The non-receptor tyrosine kinase Src is recruited to activated fibroblast growth factor receptor (FGFR) complexes through the adaptor protein factor receptor substrate 2 (FRS2). Here, we show that Src kinase activity has a crucial role in the regulation of FGFR1 signalling dynamics. Following receptor activation by ligand binding, activated Src is colocalized with activated FGFR1 at the plasma ...

متن کامل

Fibroblast growth factor receptor signalling is dictated by specific heparan sulphate saccharides

Signalling by fibroblast growth factors (FGFs) through FGF receptors (FGFRs) depends on the cell-surface polysaccharide heparan sulphate (HS) [1] [2]. HS has an ordered domain structure of highly diverse saccharide motifs that present unique displays of sulphate, carboxyl and hydroxyl groups [3]. These motifs interact with many proteins, particularly growth factors. HS binds both to FGFs [4] [5...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Brain : a journal of neurology

دوره 134 Pt 6  شماره 

صفحات  -

تاریخ انتشار 2011